Runge–Kutta projection methods with low dispersion and dissipation errors

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dispersion and Dissipation Errors of Two Fully Discrete Discontinuous Galerkin Methods

The dispersion and dissipation properties of numerical methods are very important in wave simulations. In this paper, such properties are analyzed for Runge-Kutta discontinuous Galerkin methods and Lax-Wendroff discontinuous Galerkin methods when solving the linear advection equation. With the standard analysis, the asymptotic formulations are derived analytically for the discrete dispersion re...

متن کامل

Low-dissipation and low-dispersion fourth-order Runge–Kutta algorithm

An optimized explicit low-storage fourth-order Runge–Kutta algorithm is proposed in the present work for time integration. Dispersion and dissipation of the scheme are minimized in the Fourier space over a large range of frequencies for linear operators while enforcing a wide stability range. The scheme remains of order four with nonlinear operators thanks to the low-storage algorithm. Linear a...

متن کامل

A low-dispersion and low-dissipation implicit Runge-Kutta scheme

A fourth-order, implicit, low-dispersion, and low-dissipation Runge-Kutta scheme is introduced. The scheme is optimized for minimal dissipation and dispersion errors. High order accuracy is achieved with fewer stages than standard explicit Runge-Kutta schemes. The scheme is designed to be As table for highly stiff problems. Possible applications include wall-bounded flows with solid boundaries ...

متن کامل

Optimal low-dispersion low-dissipation LBM schemes for computational aeroacoustics

Lattice Boltmzmann Methods (LBM) have been proved to be very effective methods for computational aeroacoustics (CAA), which have been used to capture the dynamics of weak acoustic fluctuations. In this paper, we propose a strategy to reduce the dispersive and disspative errors of the two-dimensional (2D) multi-relaxation-time lattice Boltzmann method (MRT-LBM). By presenting an effective algori...

متن کامل

Effective order strong stability preserving RungeKutta methods

We apply the concept of effective order to strong stability preserving (SSP) explicit Runge–Kutta methods. Relative to classical Runge–Kutta methods, effective order methods are designed to satisfy a relaxed set of order conditions, but yield higher order accuracy when composed with special starting and stopping methods. The relaxed order conditions allow for greater freedom in the design of ef...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Computational Mathematics

سال: 2014

ISSN: 1019-7168,1572-9044

DOI: 10.1007/s10444-014-9355-2